I M.Tech - I Semester – Regular Examinations - MARCH - 2023

GEOMETRIC MODELLING (MACHINE DESIGN)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Explain Concatenation and homogenous	L3	CO1	7 M			
		transformations.						
	b)	Vertices of a triangle are situated at points	L3	CO1	8 M			
		(15, 30), (25,35) and (5, 45). Perform the						
		following transformations on it:						
		i) Rotation by an angle of 10°CCW about						
		the origin						
		ii) Scaling by twice its size.						
		Obtain the concatenation transformation and						
		plot the new positions of triangle in each						
		transformation.						
OR								
2	a)	Derive the parametric representation of a	L3	CO1	8 M			
		Hermite Cubic Spline curve.						
	b)	Explain truncating and subdividing of	L2	CO1	7 M			
		curves.						

UNIT-II								
3	a)	Discuss the properties of Bezier curves.	L2	CO2	8 M			
	b)	Explain the significance of increasing the	L2	CO2	7 M			
		flexibility of Bezier curves.						
OR								
4	a)	Discuss the characteristics of a B-Spline	L2	CO2	7 M			
		curve.						
	b)	Given vertices of a polygon are given as P0	L3	CO2	8 M			
		[1 1], P1 [2 3], P2 [4 3] and P3 [3 1].						
		Calculate both second and fourth order open						
		B-spline curves.						
	1	UNIT-III						
5	a)	Differentiate between Hermite bi-cubic	L2	CO3	8 M			
		spline surface and B-Spline surface with						
		reference to number of control points and						
		order of continuity.						
	b)	Derive the parametric representation of	L3	CO3	7 M			
		Tabulated Cylinder.						
OR								
6	Der	ive the relationship between the position,	L3	CO3	15 M			
	tang	gent and twist vectors at the corner points of						
	a Bezier surface patch and write boundary							
	con	ditions and co-efficient matrix.						
UNIT-IV								
7	a)	Describe various commonly used primitives	L2	CO4	8 M			
		for solid modeling and explain the Boolean						
		operations.						

	b)	Apply Euler's law and Validate a simple	L3	CO4	7 M			
		rectangular block with a blind hole using						
		Euler's law.						
	OR							
8	Illu	strate CSG representation scheme. Draw a	L3	CO4	15 M			
	CS	G Tree for the following figure.						