I M.Tech - I Semester - Regular Examinations - MARCH - 2023

GEOMETRIC MODELLING (MACHINE DESIGN)

Duration: 3 hours

Max. Marks: 60
Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Explain Concatenation and homogenous transformations.	L3	CO1	7 M
	b)	Vertices of a triangle are situated at points $(15,30),(25,35)$ and $(5,45)$. Perform the following transformations on it: i) Rotation by an angle of $10^{\circ} \mathrm{CCW}$ about the origin ii) Scaling by twice its size. Obtain the concatenation transformation and plot the new positions of triangle in each transformation.	L3	CO1	8 M
OR					
2	a)	Derive the parametric representation of a Hermite Cubic Spline curve.	L3	CO1	8 M
	b)	Explain truncating and subdividing of curves.	L2	CO1	7 M

UNIT-II					
3	a)	Discuss the properties of Bezier curves.	L2	CO 2	8 M
	b)	Explain the significance of increasing the flexibility of Bezier curves.	L2	CO 2	7 M
OR					
4	a)	Discuss the characteristics of a B-Spline curve.	L2	CO 2	7 M
	b)	Given vertices of a polygon are given as P0 $\left[\begin{array}{ll}1 & 1\end{array}\right], \mathrm{P} 1\left[\begin{array}{ll}2 & 3\end{array}\right], \mathrm{P} 2\left[\begin{array}{ll}4 & 3\end{array}\right]$ and $\mathrm{P} 3\left[\begin{array}{ll}3 & 1\end{array}\right]$. Calculate both second and fourth order open B-spline curves.	L3	CO 2	8 M
UNIT-III					
5	a)	Differentiate between Hermite bi-cubic spline surface and B-Spline surface with reference to number of control points and order of continuity.	L2	CO3	8 M
	b)	Derive the parametric representation of Tabulated Cylinder.	L3	CO3	7 M
OR					
6		rive the relationship between the position, gent and twist vectors at the corner points of Bezier surface patch and write boundary ditions and co-efficient matrix.	L3	CO3	15 M
UNIT-IV					
7	a)	Describe various commonly used primitives for solid modeling and explain the Boolean operations.	L2	CO4	8 M

	b)	Apply Euler's law and Validate a simple rectangular block with a blind hole using Euler's law.	L3	CO4	7 M
8	OR 8 CSG Tree for the following figure.				

